

Available online at www.sciencedirect.com

Journal of Power Sources 146 (2005) 565-569

www.elsevier.com/locate/jpowsour

Fluoride phosphate Li₂CoPO₄F as a high-voltage cathode in Li-ion batteries

Shigeto Okada*, Mizuki Ueno, Yasushi Uebou, Jun-ichi Yamaki

Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga 816-8580 Japan

Available online 5 July 2005

Abstract

As a new high-voltage cathode candidate for post 4 V cathodes, ordered-olivine $LiCoPO_4$ and fluoride phosphate, Li_2CoPO_4F were synthesized by solid-state reaction. Their structures were identified by neutron diffraction. The 5 V discharge profiles were demonstrated using coin-type cells. Two important issues for commercial use, metal dissolution and oxygen release at elevated temperatures, were also tested with an atomic absorption spectrophotometer and differential scanning calorimeter, respectively. © 2005 Elsevier B.V. All rights reserved.

Keywords: Fluoride phosphate; High-voltage cathode; Lithium-ion battery

1. Introduction

Recently, polyanionic cathodes such as olivine type LiCoPO₄ have attracted much attention as next-generation cathodes with high voltage. Fluorides, however, have been expected to be useful as high-voltage cathodes because the electronegativity of fluorine is greater than that of oxide [1]. We anticipate that not only ordered phosphoolivine LiCoPO₄ but also its relative, fluoride phosphate Li₂CoPO₄F, would be strong candidates for new highvoltage cathodes with large capacity, as the theoretical capacity of Li₂CoPO₄F is twice as large as that of LiCoPO₄. The two compounds were synthesized in the present study by means of the solid-state reaction method, and their structures were identified by neutron diffraction. The 5V discharge profiles were demonstrated using coin-type cells. In addition, two significant issues regarding commercial use, metal dissolution of cathodes into electrolytes and oxygen release from cathodes in cells at elevated temperature, were investigated.

* Corresponding author.

E-mail address: s-okada@cm.kyushu-u.ac.jp (S. Okada).

2. Experimental

Conventional solid-state reactions were employed to synthesize the phospho-olivines. LiCoPO₄ was prepared from stoichiometric amounts of reactants Li₂CO₃, P₂O₅ and CoO. The mixtures were pre-sintered at 500 °C for several hours. After firing at 780-820 °C for 2 days with intermittent grinding, the mixtures were quenched using liquid nitrogen. Moreover, the obtained LiCoPO₄ was mixed with LiF and heated at 780 °C for 78 h in a vacuum quartz tube. Both of the obtained powders, LiCoPO₄ and Li₂CoPO₄F, were indexed as orthorhombic in the space group Pnma by XRD (Rigaku RINT2100HLR/PC), using monochromatized Cu Ka radiation. Neutron diffraction data were obtained using a powder diffractometer, HERMES [2], at the JRR-3M reactor of the Japan Atomic Energy Research Institute. The structural parameters were refined by Rietveld analysis using RIETAN 97β [3].

Cathode pellets were fabricated by mixing the identified cathode powder with 25 (w/o) AB (acetyleneblack, Denki Kagaku Co. Ltd.) and 5 (w/o) PTFE Teflon binder (Polyflon TFE F-103, Daikin Industry Ltd.). We evaluated the electrochemical cathode performance in coin-type Li cells using a non-aqueous electrolyte (1 M LiPF₆/EC-DMC (1:1 vol%), Mitsubishi Chemical Co., and 1 M LiPF₆/EMS, Tomiyama

^{0378-7753/\$ –} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2005.03.149

 Table 1

 Comparison of obtained and reported lattice parameters for LiCoPO4

LiCoPO ₄	a [Å]	<i>b</i> [Å]	c [Å]	SG	Rwp
This work	10.200	5.919	4.697	Pnma	6.81
ICDD #32-0552	10.206	5.922	4.701	Pnma	_

Table 2

Comparison of lattice parameters	for Li ₂ CoPO ₄ F and Li ₂ NiPO ₄ F [4]
----------------------------------	---

Li_2MPO_4F	a [Å]	b [Å]	c [Å]	SG	Rwp
Li ₂ CoPO ₄ F	10.444	6.381	10.864	Pnma	7.26
Li2NiPO4F	10.473	6.289	10.846	Pnma	-

Pure Chemicals Co.) and a polypropylene separator (Celgard 3501) against a Li metal anode.

3. Result and discussion

3.1. Synthesis and characterization

Both synthesized powders, LiCoPO₄ and Li₂CoPO₄F, were indexed as orthorhombic space group *Pnma* by X-ray diffraction. The observed, calculated and difference plots for neutron diffraction patterns of LiCoPO₄ and Li₂CoPO₄F are shown in Fig. 1. The lattice parameters in Tables 1 and 2 were derived from least-squares refinement of the powder diffraction data in Fig. 1.

The obtained lattice parameters for LiCoPO₄ agreed well with literature values (ICDD #32-0552). In addition, it was confirmed that Li_2CoPO_4F is isostructural with Li_2NiPO_4F [4]. Interatomic distances for LiMPO₄ and Li_2MPO_4F

Table 3 Interatomic distances for LiMPO₄

M—O bond length [Å]	Co	Mp [5]	Ee [5]	NJ [5]
	0	win [5]	16[5]	
M-O(1)	2.150	2.23	2.25	2.150
M-O(2)	2.084	2.14	2.00	2.070
$M - O(3) \times 2$	2.187	2.13	2.03	2.072
$M - O(3) \times 2$	2.060	2.30	2.30	2.150
Average	2.151	2.205	2.151	2.110

Table 4	
interatomic distances for Li2MI	O ₄ F

M—O bond length [Å]	Li2CoPO4F	Li2NiPO4F [11]
$\overline{M(1)}$ $-O(2) \times 2$	1.9960	2.011
$M(1) - O(5) \times 2$	2.0872	2.070
$M(1) - F(2) \times 2$	2.1637	2.081
$M(2) - O(6) \times 2$	2.0092	2.013
$M(2) - O(4) \times 2$	2.0606	2.036
$M(2) - F(1) \times 2$	2.1552	2.082
Average	2.0382	2.032

Table 5

M—O interatomic distances in MO₆ octahedra calculated by Shannon's ion radii [6]

M–O interatomic distance [Å]	Co^{2+}	Mn ²⁺	Fe ²⁺	Ni ²⁺
M (high spin)–O	2.145	2.23	2.18	2.09
M (low spin)–O	2.05	2.07	1.98	-

obtained from Rietveld refinements of neutron diffraction by OLFEE are shown in Tables 3 and 4, respectively. According to Shannon's ion radius [5] in MO₆, the M–O interatomic distances in Table 5 suggest that both Co and Fe have a 2+ high spin state in the initial LiMPO₄ olivine matrix. Actually,

Fig. 1. Rietveld profiles of neutron diffraction for LiCoPO₄ and Li₂CoPO₄F.

Table 6 Atomic distribution in LiCoPO₄ and Li₂CoPO₄F *Pnma* matrixes

Pnma	4a	4b	4c	8d
LiCoPO ₄ Li ₂ CoPO ₄ F	Li Co(1)	- Co(2)	P, Co, O(1), O(2) F(1), F(2), P(1), P(2), Li(2),	O(3) Li(1), O(1),
			Li(3), O(2), O(3), O(4), O(5)	O(6)

Fig. 2. Co K-edge XANES spectra of LiCoPO₄ and Li₂CoPO₄F.

Fig. 3. Quasi-open circuit voltage profiles of LiCoPO₄ and Li₂CoPO₄F.

Fig. 5. TG profiles of charged $LiCoO_2$, $LiCoPO_4$ and Li_2CoPO_4F cathode pellets.

the Thomas group proved that Fe in LiFePO₄ has a 2+ high spin state by 57 Fe Mössbauer spectroscopy [7]. On the other hand, Co seems to have a 2+ low spin state in Li₂CoPO₄F.

Although the space groups are the same, there are remarkable differences between the structures from a crystallographic point of view. LiCoPO₄ has CoO₆ octahedra, LiO₆ octahedra and PO₄ tetrahedra. In contrast, Li₂CoPO₄F has CoO₄F₂ octahedra instead of CoO₆ octahedra. In addition, Li₂CoPO₄F has two kinds of Li sites, 4c and 8d. The atom distributions in the matrixes are shown in Table 6.

3.2. XANES spectra

The XANES spectra for LiCoPO₄ and Li₂CoPO₄F are shown in Fig. 2. We used CoO and Co(CH₃COCHCOCH₃)₃ as Co²⁺ and Co³⁺ standard compounds, respectively. The Co K-edge photon energy of initial LiCoPO₄ and Li₂CoPO₄F agreed well with that of the Co²⁺ standard compound. These results of the Rietveld analysis and XANES spectra suggest that the Li₂CoPO₄F sample must be stoichiometric.

3.3. Cathode properties

The quasi-open circuit voltage charge–discharge profiles of LiCoPO₄ and Li_2CoPO_4F are shown in Fig. 3.

Fig. 4. Co and Mn concentrations in electrolyte solution at room temperature and 60 °C.

Fig. 6. DSC profiles of charged LiCoO₂, LiCoPO₄ and Li₂CoPO₄F cathode pellets without electrolytes.

It was found that the fluoride phosphate Li_2CoPO_4F is a new 5 V class cathode like $LiCoPO_4$ with a slightly higher open circuit voltage than that of $LiCoPO_4$. In contrast to $LiCoPO_4$, the monotonical decrease profile of $LiCoPO_4F$ suggests that it does not undergo a two-phase reaction in the 5 V region.

The large irreversible capacity of the first cycle is caused by electrolyte decomposition in the charging process over 5 V. Our other attempts to charge LiNiPO₄ and Li₂NiPO₄F proved unsuccessful with the high anodic stable ethyl methyl sulfone (EMS) electrolyte [8]. According to the recent GGA + U calculation by Ceder et al. [9], the OCV of LiNiPO₄ is 5.1 V versus Li/Li⁺, likely due to its higher cell voltage than that of LiCoPO₄ and Li₂CoPO₄F. We expect that there is considerable room for improvement up to the theoretical upper limit of approximately 310 mAh g⁻¹ for Li₂CoPO₄F and Li₂NiPO₄F by using a new, as yet unknown, oxidation-resistant electrolyte.

3.4. Chemical stability

Mn and Co concentrations in 1 M LiPF₆ EC:DMC (1:1) electrolyte for 3 days RT and $60 \,^{\circ}$ C storage of LiMn₂O₄, LiCoO₂, LiCoPO₄ and Li₂CoPO₄F are presented in Fig. 4. Mn concentrations in the electrolyte are close to the data reported in the literature by Okada et al. [10]. The polyanionic LiCoPO₄ and Li₂CoPO₄F samples showed lower solubility than the LiMn₂O₄ and LiCoO₂ oxide cathodes in all storage experiments at different temperatures and durations.

3.5. Thermal stability

Fig. 5 shows the TG profiles of charged LiCoO₂, LiCoPO₄ and Li₂CoPO₄F cathode pellets. The cathode pellet of Li_{0.4}CoO₂ exhibited a broad exothermic peak around 210 °C corresponding to oxygen release [11]. The weight loss of Li_{0.4}CoO₂ began at 200 °C, while no gas generation was observed in Li_{0.17}CoPO₄ and LiCoPO₄F under 280 °C. The thermal instability of the oxide cathode must be due to the existence of chemically unstable Co⁴⁺ in charged Li_{0.45}CoO₂. In contrast, the cathode pellet of Li_{0.4}CoPO₄ and LiCoPO₄F had no strong exothermic peak in DSC profiles of Fig. 6 up to $400 \,^{\circ}$ C, because there is no Co⁴⁺ in charged Li_{1-x}CoPO₄ and Li_{2-x}CoPO₄F.

4. Conclusion

Of the four olivine cathodes, LiCoPO₄ exhibited the highest 4.8 V discharge plateau without a Co⁴⁺ anomalous valence state. The energy density was comparable to that of layered rocksalt LiCoO₂ (120 mAh $g^{-1} \times 4 V = 480 \text{ mWh } g^{-1}$). Moreover, we discovered that the fluoride phosphate Li₂CoPO₄F is a 5V class cathode like LiCoPO₄ with a slightly higher open circuit voltage than that of LiCoPO₄. Unfortunately, the ture capacity and cyclability of Li₂CoPO₄F are still unknown, because there is no good liquid electrolyte with oxidation resistance up to 5 V level. However, it is noteworthy that the theoretical capacity of Li₂CoPO₄F is almost twice as large as that of LiCoPO₄. Both polyanionic high-voltage cathodes, LiCoPO₄ and Li₂CoPO₄F, showed better stability than the traditional oxide cathodes, LiCoO₂ and LiMn₂O₄, in metal dissolution and oxygen release tests at elevated temperatures.

Acknowledgement

The authors are grateful to Dr. Hironori Kobayashi of the National Institute of Advanced Industrial Science and Technology for his assistance with the Rietveld analysis with OLFEE.

References

- Y. Koyama, I. Tanaka, H. Adachi, J. Electrochem. Soc. 147 (10) (2000) 3633.
- [2] K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi, Jpn. J. Appl. Phys. 37 (1998) 3319.
- [3] F. Izumi, in: R.A. Young (Ed.), The Rietveld Method, Oxford University Press, Oxford, 1993 (Chapter 13).
- [4] M. Dutreilh, C. Chevalier, M. El-Ghozzi, D. Avignant, J. Solid State Chem. 142 (1999) 1.
- [5] O. Garcia-Moreno, et al., Chem. Mater. 13 (2001) 1570-1576.
- [6] R.D. Shannon, Acta Crystallogr. 32 (1976) 751.

569

- [7] A.S. Andersson, Comprehensive Summaries of Uppsala Dissertations from Faculty of Science and Technology, vol. 532, 2000.
- [8] K. Xu, C.A. Angell, J. Electrochem. Soc. 145 (4) (1998) 70.
- [9] G. Ceder, Y-S. Meng, Y. Shao-Horn, C.P. Grey, Meeting Abstract of IMLB-12, #22 (2004).
- [10] M. Okada, T. Shoji, T. Mouri, K. Kamioka, S. Kasahara, M. Yoshio, Extended Abstract of 41st Battery Symposium in Japan, Nagoya, 2D08, 2000, p. 436.
- [11] J.R. Dahn, E.W. Fuller, M. Obrovac, U. von Sacken, Solid State Ionics 69 (3–4) (1994) 265.